EPITA S3 promo 2018
Practical Programming - Machine Test

Marwan Burelle*

Friday, November 14, 2013

Instructions:

You must read the whole subject and all these instructions. Every explicit instruc-
tions in the subject are mandatory. Points lost for ignoring subject rules are not open to
arguments, including compiling issues or usage of directory hierarchy.

Your home directory during the test is temporary, in this directory you'll find a directory
subject and a directory rendu. In the subject directory, you'll find a sub-directory called
Skel, you have to copy the content of this directory in your rendu directory.

You must make regular uploads to be sure not to lose your work. In order to upload

your work, simply call the command rendu.
Here is given as example, commands to perfom the needed copy from subject/Skel di-
rectory to rendu directory:

> cd
> cd exam/subject
> cp Skel/* ~/exam/rendu/

In this directory you’ll find: a Makefile offering targets to compile your code, some annex
files, a file for each questions named questionXX.c. Only question files can be modified, all
other files wil be replaced by the original one during the automatic correction.

The Makefile offers a target building a test program for each question. This test program
will perform all the interraction part (input and output) and call your (or yours) function(s)
with the correct expected parameters. In order to target the build of these test programs, you
need to issue the command (for question number XX): make questionXX.

During automatic correction, this Makefile will be used and thus the question XX will
be evaluated only if make questionXX succeed. Of course, the grade will depends on the
correctness of your answer.

Scale information are only indicative and may be changed later.

At the end of the document, you’l find the extra sections providing:

e Advices about test programs;
e List of all files that must be in your rendu directory.

There are 25 points and 12 questions in this test.

“marwan.burelle @lse.epita.fr

C: Bases

Question 1 (D
Write the following function(s):
unsigned long power (unsigned long a, unsigned long b);
power(a,b)conunuethehnegera@
Exemple 1.1:
shell> ./question®l1 O 5
Fixed tests:
power(2, 0) = 1 (expected 1)
power(2, 1) = 2 (expected 2)
power(2, 2) = 4 (expected 4)
power(2, 3) = 8 (expected 8)
power(2, 4) = 16 (expected 16)
Random tests:
power(9, 6) = 531441
power(3, 15) = 14348907
power(3, 15) = 14348907
power(4, 12) = 16777216
power(3, 1) = 3
Question 2 (D)

Write the following function(s):

unsigned long fibo(unsigned long n);

fibo(n) returns the n—th terms of the Fibonacci sequence.

Here is a reminder of the Fibonacci sequence:

0 whenn =0
fibo(n) =< 1 whenn = 1

fibo(n— 1) + fibo(n — 2)

Exemple 2.1:

shell> ./question®2 10

fibo(0) = 0

fibo(1) =1

fibo(2) =1

fibo(3) = 2

fibo(4) = 3

fibo(5) =5
fibo(6) = 8
fibo(7) = 13
fibo(8) = 21
fibo(9) = 34
Question 3 (D

Write the following function(s):

unsigned long fact(unsigned long n);

fact (n) returns the integer !n.

fact(n) = { 1 whenn =0
n=fact(n—1)
Exemple 3.1:
shell> ./question®3 0 5
fact(13) = 6227020800
fact(01) =1
fact(12) = 479001600
fact(10) = 3628800
fact(08) = 40320
Question 4 2)

Write the following function(s):

unsigned hamming(unsigned a, unsigned b);

hamming(a, b) compute the Hamming distance between a and b. The Hamming distance
is defined as the number of different bits between a and b. For example, between the integer
4 (100 in binary) and the integer 5 (101 in binary) the Hamming distance is 1.

As a reminder: we can test the last bit (least significant) of an integer, using the modulus
(a % 2). Also, dividing by 2 deletes the last bit.

Finally, it can be useful to consider the bit-by-bit exclusive-or operation between two in-
teger: a A b. In the result of this operation, all bits that was different between a and b
are set to 1 while the others are set to 0. thus, the Hamming distance can be computed by
counting the number of bits setto 1 ina * b.

Exemple 4.1:

shell> ./question®4 0 5

Fixed Tests:

a = 00000000000000000000000000000000
b 11111111111111111111111111111111
hamming(a, b) = 32

Random Tests:

a =01101011100010110100010101100111
b = 00110010011110110010001111000110
hamming(a, b) = 15

a =01100100001111001001100001101001
b =01100110001100110100100001110011
hamming(a, b) = 11

a =01110100101100001101110001010001
b = 00011001010010010101110011111111
hamming(a, b) = 17

a = 00101010111010001001010001001010
b =01100010010101010101100011101100
hamming(a, b) = 16

a = 00100011100011100001111100101001
b = 01000110111010000111110011001101
hamming(a, b) = 16

Question 5 3)
Write the following function(s):

unsigned int_sqrt(unsigned x);

int_sqrt(x) computes the integer part of the square root of x. The integer square root
(noted | v/x]) of an integer is the integer solution to the equation:

LVl < x < (LVx]+1)
We can compute this equation by using the Héron method (a specific case of the Newton

method): starting from a partial solution y, we compute the next approximation y" using
the mean:

Y =0+x/y)/2

The algorithm stops when y < y’. We choose to start with an initial approximation greater
than the root (in this case, x itself can be a good start.)

Exemple 5.1:

shell> ./question®5 0 5
int_sqrt(1804289385) = 42476 (0OK)
int_sqrt(846930888) = 29102 (0K)
int_sqrt(1681692779) = 41008 (0OK)

int_sqrt(1714636917) = 41408 (OK)
int_sqrt(1957747795) = 44246 (OK)
C: Strings
Question 6 (2)

Write the following function(s):
void to_lower (char *s);
to_lower(s) transform into lower-case every letters from string s. The pointer s is not

NULL. Of course, your function must leave unchanged character that are not letters (or
letters already in lower-case.) You may take a look at the ascii(7) manual page.

Notes: the test program verifies that you haven’t override the end of the input string
(marked by the character of ASCII code 0.)

Exemple 6.1:

shell> ./question®6 1 10
FIXED TESTS:

Original:

"A FULL UPPER-CASE STRING."
After to lower:

"a full upper-case string."
Off-bound check: OK OK
RANDOM TESTS:

Original:

"\VA/vK~|%r"
After to lower:

"\va/vk~|%r"

Off-bound check: OK OK

Question 7 (D)
Write the following function(s):

size_t mystrlen(char *s);

mystrlen(s) function calculates the length of the string s, excluding the terminating null
byte (" \0’). The input pointer is not NULL. You must respect the expected behavior of the
function strlen(3).

Exemple 7.1:

shell> ./question®7 0 5

s = "n{6\P"

mystrlen(s) = 5 -- check: OK
shell> ./question®7 ® O

g = nn

mystrlen(s) = ® -- check: OK

Question 8 2)
Write the following function(s):

char *mystrncpy(char *dst, char *src, size_t 1len);

mystrncpy(dst,src,len) : function copies at most len bytes of the string pointed to
by src to the buffer pointed to by dst. The strings may not overlap, and the destination
string dst must be large enough to receive the copy. If there is no null byte among the first
len bytes of src, the string placed in dst will not be null-terminated. If the length of src
is less than len, mystrncpy () writes additional null bytes to dst to ensure that a total of
len bytes are written.

Note: mystrncpy () always writes exactly len bytes, whatever is the length of src.

You should read carefully the manual page of strncpy(3) which provides a complete
description of the expected function.

Exemple 8.1:
shell> ./question®8 0 5
src = "n{6\P"

test: mystrncpy(dst,src,6)
dst = "n{6\P"
-- check:

first char: OK

last char: OK

® fill: OK

overflow: OK

test: mystrncpy(dst,src,2)
dSt — un{ n

-- check:
first char: OK
last char: OK
overflow: OK

test: mystrncpy(dst,src,10)
dst = "n{6\P"
-- check:

first char: OK

last char: OK

® fill: OK

overflow: OK

test: mystrncpy(dst,src,®)
-- check:
overflow: OK

C: Linked Lists

Question 9 (2)
Write the following function(s):

struct s_list *duplicate_list(struct s_list *1);
duplicate_list (1) returns a newly allocated list containing every element of 1, in the
same order.

List are defined using the following structures:

struct s_list {

struct s_list *next;
int val;
};
Note: the original list is deleted by the test program before printing the result of your
function.
Exemple 9.1:
shell> ./question®9 5
1 =
00 -> 01 -> 02 -> 03 -> 04
Cloning list ... rl = duplicate_list(l)
Delete (free) 1 ...
rl =
00 > 01 -> 02 -> 03 -> 04

Question 10 (4)

Write the following function(s):

struct list* merge(struct list *11, struct list *12);

merge(l1l, 12) returns a list composed of the elements of the two lists 11 and 12 in
increasing order. The original lists are themsleves sorted in increasing order.

Your function must not create a new list but must reuse cells from the original lists, modi-
fying only the next pointer. Thus, you’ll never need malloc, nor free.

Exemple 10.1:
shell> ./questionl® 5
11 =

01 -> 03 -> 05 -> 07 -> 09
12 =

00 > 02 > 04 > 06 -> 08
1 = merge(11, 12)
1 =

00 -> 01 -> 02

-> 03 -> 04 > 05 -> 06 -> 07 -> 08 -> 09

C: Tableaux

Question 11 3)

Write the following function(s):

void select_sort(int tab[], size_t len);

select_sort(tab, len) sort the array tab of length len using a selection sort. The
selection sort algorithm is the following one:

select_sort(tab, len):

for i <- 0 to len - 1 do
min <- i
for j <- i+ 1 tolen -1 do

if tab[j] < tab[min] then min <- j

done
tab[i] <-> tab[min]

done

Exemple 11.1:
shell> ./questionll ® 5
Before sort:

tab=1] 83| 8 | 77 | 15 | 93 |
After sort:
tab= | 15 | 77 | 83 | 8 | 93 |

Question 12 3)
Write the following function(s):

void hist(char *str, size_t len, size_t counts[]);

hist(str,len, counts) counts the number of different occurrences of every characters
in the buffer str and stores the result in the array counts. The array counts is already
allocated with 256 cells, but theses cells have not been initialized to 0. The buffer str
contains exactly len characters and is not a string: you should read exactly len characters,
even if you encounter the character *\0’.

For practical reasons, only characters using the lower 7bits will be tested (code from O to
127) but the counts array has 256 cells, and all unused cells must be initialized to 0.

Exemple 12.1:

shell> ./questionl2 ® 40

s = "n{6\Pavw[:m04=ZvMDAbvU;e’RrsA4L]J1_$AA{S|"

hist(s, 40, counts)

0x00 :	0x20	0x40 @ :	0x60
0x01 :	0x21 ! :	Ox41 A : 1	0x61 a : 1
0x02	Ox22 " :	®x42 B :	0x62 b : 1
0x03	Ox23 # :	0x43 C :	0x63 c :
0x04	Ox24 §$: 1	0x44 D : 1	0x64 d :
Ox05	Ox25 % :	®x45 E :	Ox65 e : 1
0x06	0x26 & :	®x46 F :	0x66 f :

0x07	Ox27 ’ : 1	0x47 G :	0x67 g :
0x08	0x28 (:	0x48 H :	0x68 h :
0x09	0x29) :	0x49 I :	0x69 i :
0x0a	Ox2a * :	Ox4a J : 1	0x6a j :
0x0b	0x2b + :	Ox4b K :	O0x6b k :
0x0c	Ox2c , :	Ox4c L : 1	Ox6c 1 :
0x0d :	Ox2d - :	Ox4d M : 1	0x6d m : 1
0x0e :	Ox2e . :	Ox4e N :	Ox6e n : 1
OxO0f	Ox2f / :	Ox4f O : 1	Ox6f o :
0x10	0x30 0 :	0x50 P : 1	0x70 p :
0x11	0x31 1 : 1	O0x51 Q :	0x71 q :
0x12	Ox32 2 :	®x52 R : 1	0x72 r : 1
0x13	0x33 3 :	x53 S : 1	0x73 s : 1
0x14	Ox34 4 : 2	0x54 T :	0x74 t :
Ox15	®x35 5 :	®x55 U : 1	0x75 u :
0x16	®x36 6 : 1	0x56 V :	0x76 v : 3
Ox17	Ox37 7 :	Ox57 W :	Ox77 w : 1
0x18	0x38 8 :	0x58 X :	0x78 x :
0x19	0x39 9 :	x59 Y :	0x79 y :
Oxla	Ox3a : : 1	Ox5a Z : 1	Ox7a z :
0x1b	0x3b ; : 1	Ox5b [: 1	0x7b { : 2

| Oxlc

| Ox1d

| Oxle :

| Ox1f :
Total count: 40

| Ox3c
| 0x3d
| 0x3e
| O0x3f

A

~N Vol

1

| Ox5c \ :
| 0x5d]
| Ox5e A
| Ox5f _ :

1 | 0x7c |

| Ox7d } :
3 | 0x7e ~ :
1| 0x7f

10

About The Test Session

Once the test is over, you must leave your session by closing the clock (that’s the only way.)
Note that when the test is over, your session will close directly.

When the session closed, you’ll be prompted for your password (the one used to login.)
This will end the test (your rendu directory will be archived and sent to the collecting server.)
You must not shutdown the computer before the completion of this final step, otherwise
your work will be lost.

You can send intermediary versions of your test by using the shell command rendu. It is
strongly advised that you do so to prevent data lost before the end of the test.

Even after the end of the test (in the few minutes following the test, of course), you can
restart your computer to eventually re-send your work (this may be required sometimes if some-
thing goes wrong during the final step.)

About Questions Skel

For every question, a skeleton of code is provided. This code is the minimal requirement for
the compilation of the file w.r.t. the test program. The content of the skeleton will also induce
a failure at execution time and thus you must remove the the body of the function(s). In C,
be sure to remove (or comment) the REMOVE_ME () line of code: if it’s still in the file, it will
probably be executed anyway.

Exemple 1:
For example, if you’re asked for the following function:

int identity(int x);

identity x returns X.
You’ll find the following skeleton:

int identity(int x) {
/* FIX ME */
REMOVE_ME (x);

ks

Your answer will look like:

int identity(int x) {
return Xx;

}

About test programs

When invoked withmake questionXX, make will build a binary program named questionXX.
This program can be used to test your answer to the question X in this subject. All binary wait

11

for parameters et display a small help when run with -help.

Exemple 2:
For example, the program for question 1 (this is an example and may not corresponds to
the actual question 1) will display:

Question 1:

./question®l graine taille
-help Display this list of options
--help Display this list of options

The two parameters are thus: graine (seed) and taille (size). These parameters are
present in most question: the seed is used to initilize the random number generator (for a given
seed, the generator will produce the same sequence of number) and the size can be either the
size of generated data (for list or strings ...) or the number of tested ...

If you need more detail, read the test_gXX. c files.

12

Lists of Files

Immutable Files

Makefile

base_test.c

base_test.h

cheaters.h

question®1.

question02.

question®3.

question®4.

question®5.

question06.

question®7.

question08.

question09.

questionl®.

questionll.

questionl2.

[apiii=pli=plii= =gl =l = = = = gl =g = g = N

questionl3.

skel.h

test_qO01.

test_qg02.

test_qg03.

test_qg04.

test_q05.

test_qg06.

test_q07.

test_q08.

test_q09.

test_ql®.

test_qll.

N0l n0|ln

test_ql2.

Answer Files

question0®1.

question02.

question0®3.

question®4.

question0®5.

question06.

question07.

question08.

question09.

questionl®.

questionll.

questionl2.

NN in|lnN

13

