EPITA S3 promo 2019
Programming - Machine Test

Marwan Burelle®

Friday, October 30 2015

Instructions:

You must read the whole subject and all these instructions. Every explicit in-
structions in the subject are mandatory. Points lost for ignoring subject rules are not
open to arguments, including compiling issues or usage of directory hierarchy.

Your home directory during the test is temporary, in this directory you'll find a directory
subject and a directory submission. In the subject directory, you'll find a sub-directory
called Skel, you have to copy the content of this directory in your submission directory.

You must make regular uploads to be sure not to lose your work. In order to

upload your work, simply call the command submission.
Here is given as example, commands to perfom the needed copy from subject/Skel
directory to submission directory:

> cd
> cd subject
> cp Skel/* ~/submission/

In this directory you'll find: a Makefile offering targets to compile your code, some annex
files, a file for each questions named questionXX.c. Only question files can be modified, all
other files wil be replaced by the original one during the automatic correction.

The Makefile offers a target building a test program for each question. This test program
will perform all the interraction part (input and output) and call your (or yours) function(s)
with the correct expected parameters. In order to target the build of these test programs, you
need to issue the command (for question number XX): make questionXX.

During automatic correction, this Makefile will be used and thus the question XX will
be evaluated only if make questionXX succeed. Of course, the grade will depends on the
correctness of your answer.

Scale information are only indicative and may be changed later.

At the end of the document, you'l find the extra sections providing advices about test
programs.

There are 24 points and 13 questions in this test.

“marwan.burelle@lse.epita.fr

Question 1 (1)
Write the following function(s):

unsigned long fact(unsigned long n);

fact(n) compute factorial of n.

Factorial sequence is defined by:

factln) = 1 ifn=0
act(n) = n+fact(n —1) otherwise

Exemple 1.1:

shell> ./question®1 O 5
./question®l1 0 5

Fixed tests:

fact(0) =1
fact(1) =1
fact(2) = 2
fact(3) =6

fact(4) = 24
fact(5) = 120
Random tests:
fact(7) = 5040

fact(6) = 720
fact(9) = 362880
fact(3) = 6
fact(1) =1
Question 2 (1)

Write the following function(s):

unsigned long fibo(unsigned long n);

fibo(n) compute the rank n of the Fibonacci sequence.

The Fibonacci sequence is defined by:

0 ifn=0
fibo(n) =4 1 ifn=1
fibo(n — 1) + textttfibo(n —2) otherwise

Exemple 2.1:

shell> ./question®2 0 5

Fixed tests:

fibo(0) =0

fibo(1) =1

fibo(2) =1

fibo(3) =2

fibo(4) = 3

fibo(5) =5

Random tests:

fibo(33) = 3524578

fibo(36) = 14930352

fibo(27) = 196418

fibo(15) = 610

fibo(43) = 433494437
Question 3 1)

Write the following function(s):

unsigned long my_intsqrt(unsigned long n);

my_intsqrt(n) compute the integer part of the square root of n.

The integer part of the square root is the (integer) solution x of the inequation:

X2 <n < (x+1)>

In order to solve this problem, we’ll use the Heron method (variation of the Newton
method.) Let x be an upper approximation of the square root (thus bigger than the
root but smaller than 7, we can take 7 as a initial approximate value.) We compute
the next approximation as the arithmetic mean between x and n/x et we continue
while x is bigger than n/x (i.e. x is bigger than the expected root.)

Exemple 3.1:
shell> ./question®3 0 5
Fixed tests:

my_intsqrt(0) = 0 [OK]
my_intsqgrt(1 1 [OK]
my_intsqrt(4) 2 [OK]
my_intsqrt(16) 4 [OK]
my_intsqrt(64) = 8 [OK]
my_intsqgrt(256) = 16 [OK]

my_intsqrt(1024) = 32 [OK]
my_intsqrt(4096) = 64 [OK]
my_intsqrt(16384) = 128 [OK]
my_intsqrt(65536) = 256 [OK]
Random tests:
my_intsqrt(1804289383) = 42476 [OK]
my_intsqrt(846930886) = 29102 [OK]
my_intsqrt(1681692777) = 41008 [OK]
my_intsqrt(1714636915) = 41408 [OK]
my_intsqrt(1957747793) = 44246 [OK]
Question 4 (1)
Write the following function(s):
void swap(int *a, int *Db);
swap(a,b) exchange values pointed by a et b.
Exemple 4.1:
shell> ./question®4 0 5
Testing swap:
Before swap: a = 1804289383 | b = 846930886
After swap: a = 846930886 | b = 1804289383 [OK]
Before swap: a = 1681692777 | b = 1714636915
After swap: a = 1714636915 | b = 1681692777 [OK]
Before swap: a = 1957747793 | b = 424238335
After swap: a = 424238335 | b = 1957747793 [OK]
Before swap: a = 719885386 | b = 1649760492
After swap: a = 1649760492 | b = 719885386 [OK]
Before swap: a = 596516649 | b = 1189641421
After swap: a = 1189641421 | b = 596516649 [OK]
Question 5 (2)

Write the following function(s):

int array_sum(int *begin, int *end);

array_sum(begin, end) computes the sum of the cells in the array betwee begin
(included) and end (excluded.) If end - begin = 0, the function will return 0.

Exemple 5.1:
shell> ./question®5 0 5
Fixed tests:
array:
I i1 21 31 41 51
array_sum = 15 [OK]
Random tests:
array:
| 383 | 886 | 777 | 915 | 793 |
array_sum = 3754

Question 6 (2)
Write the following function(s):

int array_min(int *begin, int *end);

array_min(begin, end) finds the minimum value of the cells in the array betwee
begin (included) and end (excluded.) The function is only defined if end - begin
> 0.

Exemple 6.1:
shell> ./question®6 0 5
Fixed tests:
array:
| 1] 2
array_min = 1
Random tests:
array:
| 383 | 886 | 777 | 915 | 793 |
array_min = 383

31 41 5|
[OK]

Question 7 3)
Write the following function(s):

int* avg_partition(int *begin, int *end);

avg_partition(begin, end) groups, in the first part of the array, values lower
than the average value of the array and groups upper values in the second part
of the array. The function returns the address of the first cell containing (after
grouping) a value greater than the average.

The partition is similar to the quick sort partition, the only difference is the choice
of the pivot value that you obtain by computing the average of the whole array.
Here is a pseud-code algorithm for the partitionning:

avg_partition(tab, left, right):
a = average of tab
pivot = left
for i = left to right - 1 do:
if tab[i] <= a:
swap tab[i] and tab[pivot]
pivot = pivot + 1
end if
done
return pivot

Exemple 7.1:
shell> ./question®7 0 8
Fixed tests:

array:
[1| 2| 3| 41| 5| 6| 7 8]
run avg_partition
lower half:
| 11 21 31 4]
upper half:
| 51 61| 7 8|
Random tests:
array:

| 383 | 886 | 777 | 915 | 793 | 335 | 386 | 492 |
run avg_partition
lower half:

| 383 | 335 | 386 | 492 |
upper half:

| 793 | 886 | 777 | 915 |

Question 8 (3)
Write the following function(s):

void array_merge(int *dst, int *al, int *a2, int *el, int *e2);

array_merge(dst, al, a2, el, e2) merges the two sorted arrays al and a2
in the array dst. el (respectively e2) is the end pointer (excluded) of the ar-
ray al (respectively a2). The area pointed to by dst is supposed to be suffi-
cient in order to contain the content of both arrays (the end of dst is at address
dst + el - al + e2 - a2.)

There’s no constraint of size betwee al and a2.

Of course, the result of merging (in dst) must be sorted.

Exemple 8.1:
shell> ./question®8 0 7
Fixed tests:

arrayl:

[11 21 3]

array2:

| 4| 5| 6/ 7|
array_merge(dst, arrayl, array2, ...)

dst:

[1 2| 3 41| 5| 6/ 7]

Fixed tests (2):

arrayl:
[11 3 51 7]
array2:
| 21 41 6|
array_merge(dst, arrayl, array2, ...)
dst:
| 1] 2 | 3 | 4 | 5 | 6 | 7 |

Random tests:

arrayl:

| 10 | 28 | 44 |
array2:

| 19| 26| 39| 49 |
array_merge(dst, arrayl, array2, ...)
dst:

| 10| 19| 26| 28 | 39| 44 | 49 |

Question 9 4)
Write the following function(s):

void array_rot(int array[], size_t len, size_t offset);

array_rot(array, len, offset) rotate of offset cells the content of the array
named array (of length len).

Rotating an array works by considering the array as a circular one and shifting cells
to the right. Since the array is circular, for a rotation of 1, the last cell take the place
of the first one (and the first one take the place of the second ...)

You can implement an naive version of the rotation of offset cells, as repeating
offset times a rotation of 1 cell. But, a more efficient version works by first saving
(copying) the last offset cells to a temporary array, then shift by offset cells to the
right the original array and finally copying back the saved cells at the beginning
of the array. The following pseudo-code describes these steps:

array_rot(array, len, offset):
tmp = malloc(offset * sizeof (int))
copy offset cells from array[len - offset] to tmp
shift array by offset cells to the right
copy offset cells from tmp[®] to array
free(tmp)

For this version, you need to allocate (using malloc(3)) a temporary array (with
enough rooms, thus offset integers.) Of course, you'll need to free the temporary
array at the end (using free(3).)

Exemple 9.1:
shell> ./question®9 0 8
Fixed tests:

array:
/[11 211 3| 41 5] e[| 7] 8]
array_rot(array, 8, 1)
array:
/ 81| 1] 2| 3| 41 5| 6] 7|
array_rot(array, 8, 4)
array:
| 41 511 e[| 71 8] 1 21 3/
Random tests:
array:

| 383 | 886 | 777 | 915 | 793 | 335 | 386 | 492 |
array_rot(array, 8, 2)
array:

| 386 | 492 | 383 | 886 | 777 | 915 | 793 | 335 |

Question 10 3)
Write the following function(s):

void insert_sort(int *begin, int *end);

insert_sort(begin, end) sorts the array betwee begin (included) and end (ex-
cluded.) We'll use the insertion sort, here is the algorithm:

insert_sort(tab, left, right):
for cur = left to right - 1 do:
X = tab[cur]
i = cur
while i > left && x < tab[i - 1] do:
tab[i] = tab[i - 1]

i=1i-1
done
tab[i] = x
done
Exemple 10.1:

shell> ./questionl® 0 5
./questionl® O 5
Fixed tests:

sorted array:

I 1] 2] 31 4| 5 |
sorting ... [OK]
after insert_sort:

I 1] 2| 31 4| 5 |

reverse sorted array.:

| 51 4| 31 2| 1|
sorting ... [OK]
after insert_sort:

[1| 2 | 3 | 4 | 5 |

Random tests:

array:
| 383 | 886 | 777 | 915 | 793 |
sorting ... [OK]

after insert_sort:
| 383 | 777 | 793 | 886 | 915 |

Question 11 (1)
Write the following function(s):

str_toupper(char *s);

str_toupper (s) translates all lower case letters of the string s (terminated by "\0")
into upper case and leaves unchanged all other characters.

Remember that characters in C are just integer. Let c be a char variable containing
a lower case letter, then c verifies: "a’ <= ¢ && c <= ’z’. Similarly, if c contains
an upper case letter, then: A’ <= c & c <= ’Z’.

Exemple 11.1:
shell> ./questionll 0 26
Fixed tests:
s = "abcdefghijklmnopqrstuvwxyz"
str_to_upper(s)
s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Random tests:
s = "n{6\Pavw[:m04=ZvMDAbvU;e’R"
str_to_upper(s)
s = "N{6\PAVW[:M04=ZVMDABVU;E’R"

Question 12 (1)
Write the following function(s):

size_t mystrlen(char *s);

mystrlen(s) function calculates the length of the string s, excluding the terminat-
ing null byte (*\0”). The input pointer is not NULL. You must respect the expected
behavior of the function strlen(3).

Exemple 12.1:

shell> ./questionl2 0 5

s = "n{6\P"

mystrlen(s) = 5 -- check: [OK]

Question 13 (1)
Write the following function(s):

10

char *mystrncpy(char *dst, char *src, size_t len);

mystrncpy(dst,src,len) : function copies at most len bytes of the string pointed
to by src to the buffer pointed to by dst. The strings may not overlap, and the
destination string dst must be large enough to receive the copy. If there is no null
byte among the first 1en bytes of src, the string placed in dst will not be null-
terminated. If the length of src is less than len, mystrncpy() writes additional
null bytes to dst to ensure that a total of 1en bytes are written.

Note: mystrncpy () always writes exactly len bytes, whatever is the length of src.

You should read carefully the manual page of strncpy(3) which provides a com-
plete description of the expected function.

Exemple 13.1:
shell> ./questionl3 0 10
src = "n{6\Pavw[:"

test: mystrncpy(dst,src,11)
dst = "n{6\Pavw[:"
-- check:

first char: [OK]

last char: [OK]

® fill: [OK]

overflow: [OK]

test: mystrncpy(dst,src,5)
dst = "n{6\P"
-- check:
first char: [OK]
last char: [OK]
overflow: [OK]

test: mystrncpy(dst,src,20)
dst = "n{6\Pavw[:"
-- check:

first char: [OK]

last char: [OK]

® fill: [OK]

overflow: [OK]

test: mystrncpy(dst,src,0)
-- check:
overflow: [OK]

11

About The Test Session

Once the test is over, you must leave your session by closing the clock (that’s the only
way.) Note that when the test is over, your session will close directly.

When the session closed, you'll be prompted for your password (the one used to
login.) This will end the test (your submission directory will be archived and sent to
the collecting server.) You must not shutdown the computer before the completion
of this final step, otherwise your work will be lost.

You can send intermediary versions of your test by using the shell command
submission. It is strongly advised that you do so to prevent data lost before the
end of the test.

Even after the end of the test (in the few minutes following the test, of course),
you can restart your computer to eventually re-send your work (this may be required
sometimes if something goes wrong during the final step.)

About Questions Skel

For every question, a skeleton of code is provided. This code is the minimal require-
ment for the compilation of the file w.r.t. the test program. The content of the skeleton
will also induce a failure at execution time and thus you must remove the the body of
the function(s). In C, be sure to remove (or comment) the REMOVE_ME () line of code: if
it’s still in the file, it will probably be executed anyway.

Exemple 1:
For example, if you're asked for the following function:

int identity(int x);

identity xreturns Xx.

You'll find the following skeleton:

int identity(int x) {
/* FIX ME */
REMOVE_ME (x);

ks

Your answer will look like:

int identity(int x) {
return x;

}

12

About test programs

When invoked with make questionXX, make will build a binary program named
questionXX. This program can be used to test your answer to the question X in this
subject. All binary wait for parameters et display a small help when run with -help.

Exemple 2:
For example, the program for question 1 (this is an example and may not corresponds to
the actual question 1) will display:

Question 1:

./question®1 graine taille
-help Display this list of options
--help Display this list of options

The two parameters are thus: graine (seed) and taille (size). These parameters
are present in most question: the seed is used to initilize the random number generator
(for a given seed, the generator will produce the same sequence of number) and the
size can be either the size of generated data (for list or strings ...) or the number of
tested . ..

If you need more detail, read the test_gXX. c files.

13

